
RELATIVITY AND COSMOLOGY I
Solutions to Problem Set 6 Fall 2023

1. The Expanding Universe

(a) This is a diagonal metric, so we know that Γ0
ij ∝ δij . Moreover, the only derivatives

that do not vanish are the ones with respect to time, of the spatial components of
the metric. This means that the only non vanishing Christoffel symbols are

Γ0
ij = − 1

2g00
∂0gij = aȧδij , Γi0j = ∂0

(
ln
√

|gij|
)

= ȧ

a
δij . (1)

(b) Consider a null path in the x direction

0 = −dt2 + a2(t)dx2 . (2)

From this, we deduce that
dx

dλ
= 1
a

dt

dλ
. (3)

It might seem that we have simply used dt2 and dx2 as factors to be divided and
interpreted as differentials. Most of the times, that works. But there is a more
formal way to understand what we have done: given a curve xµ(λ), its infinitesimal
length is given by√

gµν(x(λ))dx
µ(λ)
dλ

dxν(λ)
dλ

dλ =

√√√√−
(
dt

dλ

)2

+ a2(t)
(
dx

dλ

)2

dλ, (4)

and a null path has by definition length, and henceforth infinitesimal length, zero,
from which the result follows (up to a sign corresponding to the lightray motion in
positive and negative directions).
We then found that null paths satisfy

dx

dλ
= 1
a

dt

dλ
, (5)

where we chose the plus sign to consider paths that move in the positive x direction.
To find the momentum of a photon, we also need to impose that xµ(λ) is a geodesic,
on top of being a null path. Since we are interested in an observer at rest, Uµ

obs =
(1, 0, 0, 0) , effectively only dt

dλ
will be relevant to compute the energy of the photon.

We study its component in the geodesic equation

d2t

dλ2 + Γ0
11

(
dx

dλ

)2

= 0

d2t

dλ2 + aȧ

(
dx

dλ

)2

= 0

d2t

dλ2 + ȧ

a

(
dt

dλ

)2

= 0 .

(6)
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where in the last line we used (5). Defining p0(t) = dt
dλ
, the differential equation

becomes
dp0

dλ
+ ȧ

a
(p0)2 = 0

p0ṗ0 = − ȧ

a
(p0)2

ṗ0

p0 = − ȧ

a
.

(7)

This equation is solved by
p0 = E0

a
, (8)

where E0 is the value of p0 when a = 1 . The energy of the photon for an observer
at rest is thus

E = −pµUµ = −g00
E0

a
= E0

a
. (9)

We interpret this result as the fact that the energy of the photon as measured by
an observer at rest is diminished by the expansion of the universe: this is called the
cosmological redshift.

(c) In the fluid’s rest frame, the non-vanishing components of the stress energy tensor
are

T 00 = ρ , T ij = P

a2 δij . (10)

The conservation equation explicitly reads

∇µT
µν = ∂µT

µν + ΓµµσT σν + ΓνµσT µσ = 0 . (11)

Choosing ν = 0 we get the continuity equation

∂0T
00 + Γµµ0T

00 + Γ0
µσT

µσ = 0

ρ̇+ 3 ȧ
a
ρ+ 3aȧ P

a2 = 0

ρ̇ = −3 ȧ
a

(ρ+ P ) .

(12)

Choosing instead ν = i we obtain

∂iT
ii + ΓµµiT ii + ΓiµσT µσ = 0

1
a2∂iP = 0 ,

(13)

as we wanted to show.

(d) Using P = ωρ in the continuity equation we get

ρ̇ = −3 ȧ
a
ρ(1 + ω)

dρ

ρ
= −3da

a
(1 + ω)

ρ = ρ0a
−3(1+ω) .

(14)

The various cases that we are given in the Problem set represent the different eras
of evolution of our universe in which different kinds of fluids were dominating the
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total energy density and pressure of the universe. The condition ω = 0 represents
pressure-less matter, which dilutes as

ρm = ρm,0a
−3 . (15)

This makes sense, as the expansion of the universe increases the volume and thus
reduces the density of matter. The condition ω = 1

3 represents radiation, which
dilutes as

ρr = ρr,0a
−4 . (16)

As we saw in the first part of this exercise, the energy of photons is diluted by
the cosmological redshift, so that on top of the cubic dilution of density due to
the expansion of space, we have an extra power of a given by the stretching of the
photons’ wavelengths. Finally, the condition ω = −1 represents dark energy, which
has negative pressure. Its energy density goes as

ρΛ = ρΛ,0 . (17)

Can you deduce the chronological order of these different eras of matter domination,
radiation domination and dark energy domination?

2. Geodesic Deviation

(a) The commutator between T and S vanishes because they are two different vectors
of a basis. Explicitly,

[T, S]ν = T µ∂µS
ν − Sµ∂µT

ν

= ∂xµ

∂t
∂µ
∂xν

∂s
− ∂xµ

∂s
∂µ
∂xν

∂t

= ∂2xν

∂t∂s
− ∂2xν

∂s∂t
= 0

(18)

as expected. It will then be useful to use

[T, S]ν ≡ T µ∂µS
ν − Sµ∂µT

ν = T µ∇µS
ν − Sµ∇µT

ν , (19)

which follows from the symmetry of the Christoffel symbols in their lower indices.
Indeed the additional terms are

T µΓνµρSρ − SµΓνµρT ρ = T µΓνµρSρ − SρΓνρµT µ = 0 (20)

“Geometric” solution This exercise is easier by using some differential geomet-
ric language (you already know the concepts, it’s just a smarter notation in which
some things take a simpler form). If you don’t like it is fine, there is an alternate
solution using brute force on components below. In class you saw the definition of
the Riemann tensor

[∇µ,∇ν ]T λ = Rλ
σµνT

σ. (21)
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However there is a more general definition that uses the covariant derivative along a
vector X, ∇X ≡ Xµ∇µ. It has the geometric meaning of computing the derivative
of a tensor in the direction of the vector X 1. The ∇µ you know is just a special
case when X is a basis vector. Now the more general definition of the Riemann
tensor is (

[∇X ,∇Y ] − ∇[X,Y ]
)
T λ = Rλ

σµνX
µY νT σ. (22)

As a bonus exercise 2 you can show that this definition is equivalent to the one you
already now (it’s just a few lines). Now we can rewrite (19) as

∇TS − ∇ST = 0. (25)

Then we have

A = ∇TV = ∇T∇TS = ∇T∇ST = [∇T ,∇S]T, (26)

where in the last line we used ∇TT = 0 which is just the geodesic equation. Now
this is just the definition of the Riemann tensor (22) for X = T and Y = S and
[S, T ] = 0. Therefore,

Aµ = [∇T ,∇S]T µ = Rµ
νρσT

ρSσT ν , (27)

as we wanted to show.

Brute force solution Let us be very pedantic and carry out each step

Aµ = T ρ∇ρV
µ

= T ρ∇ρ(T σ∇σS
µ)

= T ρ∇ρ(Sσ∇σT
µ)

= (T ρ∇ρS
σ)(∇σT

µ) + T ρSσ∇ρ∇σT
µ

= (Sρ∇ρT
σ)(∇σT

µ) + T ρSσ(∇ρ∇σT
µ − ∇σ∇ρT

µ + ∇σ∇ρT
µ)

= (Sρ∇ρT
σ)(∇σT

µ) + T ρSσ(Rµ
νρσT

ν + ∇σ∇ρT
µ)

= (Sρ∇ρT
σ)(∇σT

µ) +Rµ
νρσT

ρT νSσ + Sσ∇σ(T ρ∇ρT
µ) − (Sσ∇σT

ρ)∇ρT
µ

= Rµ
νρσT

ρT νSσ + Sσ∇σ(T ρ∇ρT
µ)

= Rµ
νρσT

ρT νSσ ,
(28)

proving what we wanted. The step from the second to the third line is using the
vanishing of the commutator of the two vectors. The step from the fourth line
to the fifth is introducing some terms that add up to zero in order to make the
Riemann tensor appear. After that, we write T ρSσ∇σ∇ρT

µ = Sσ∇σ(T ρ∇ρT
µ) −

1Note that the notion of derivative is meaningless without specifying a direction, if you are surprised
it is just that this fact was hidden to you when always taking derivatives along basis vectors.

2Here it is :

[∇X , ∇Y ]T λ = XµY ν [∇µ, ∇ν ]T λ + Xµ(∇µY ν)∇νT λ − Y ν(∇νXµ)∇µT λ, (23)

where the second term comes from Leibniz’s rule. It gets cancel by the covariant derivative along the
commutator :

∇[X,Y ]T
λ = [X, Y ]ν∇νT λ = (Xµ(∇µY ν) − Y µ(∇µXν))∇νT λ. (24)
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(Sσ∇σT
ρ)∇ρT

µ such that in the next line we get a neat cancelation. The final
step is true because T ρ∇ρT

µ = 0 for a vector T that is defined to be tangent to a
geodesic.

3. The Riemann Tensor

Following the hint, we will start from

Rρσµν +Rρµνσ +Rρνσµ = 0 , (29)

and its permutations

Rσµνρ +Rσνρµ +Rσρµν = 0 , (30)
Rµνρσ +Rµρσν +Rµσνρ = 0 , (31)
Rνρσµ +Rνσµρ +Rνµρσ = 0 . (32)

We start by adding (29) to (32). We get

0 = Rρσµν +Rρµνσ +Rρνσµ +Rνρσµ +Rνσµρ +Rνµρσ

= Rρσµν +Rµρσν +Rρνσµ −Rρνσµ +Rσνρµ +Rνµρσ

= Rρσµν +Rµρσν +Rσνρµ +Rνµρσ ,

(33)

where we used the Riemann’s antisymmetry properties to cancel some terms and put
other terms in a form that will be convenient for what is to come. We continue by adding
(30) to (31). We get

0 = Rσµνρ +Rσνρµ +Rσρµν +Rµνρσ +Rµρσν +Rµσνρ

= Rσµνρ +Rσνρµ −Rρσµν +Rµνρσ +Rµρσν −Rσµνρ

= Rσµνρ −Rρσµν +Rµνρσ +Rµρσν .

(34)

We impose this to be equivalent to (33). We obtain

Rρσµν +Rµρσν +Rσνρµ +Rνµρσ = Rσµνρ −Rρσµν +Rµνρσ +Rµρσν

Rρσµν −Rµνρσ = −Rρσµν +Rµνρσ

2Rρσµν = 2Rµνρσ ,

(35)

as we wanted to prove.
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4. The Curvature of S3

(b)(a) The integral reads

I = 1
2

∫ (dψ
dλ

)2

+ sin2 ψ

(dθ
dλ

)2

+ sin2 θ

(
dφ

dλ

)2
 dλ (36)

Let us consider first the variation with respect to ψ → ψ + δψ . We are going to
only keep terms up to δψ2

δψI = 1
2

∫ 2dψ
dλ

dδψ

dλ
+ 2 sinψ cosψδψ

(dθ
dλ

)2

+ sin2 θ

(
dφ

dλ

)2
 dλ

=
∫ −d2ψ

dλ2 + sinψ cosψ
(dθ

dλ

)2

+ sin2 θ

(
dφ

dλ

)2
 δψdλ .

(37)

We used that (
dψ

dλ
+ dδψ

dλ

)2

=
(
dψ

dλ

)2

+ 2dψ
dλ

dδψ

dλ
+O(δψ2) , (38)

and integrated by parts the derivative acting on δψ . The variation of this integral
should vanish. Comparing with the geodesic equation, we read off some Christoffel
symbols

Γψθθ = − sinψ cosψ , Γψφφ = − sinψ cosψ sin2 θ . (39)
Then we vary with respect to θ and we get

δθI = 1
2

∫ sin2 ψ

2dθ
dλ

dδθ

dλ
+ 2 sin θ cos θδθ

(
dφ

dλ

)2
 dλ

=
∫ −2 sinψ cosψdψ

dλ

dθ

dλ
− sin2 ψ

d2θ

dλ2 + sin2 ψ sin θ cos θ
(
dφ

dλ

)2
 δθdλ .

(40)

We read off
Γθψθ = cotψ , Γθφφ = − sin θ cos θ . (41)

Finally, we vary with respect to φ.

δφI =
∫

sin2 ψ sin2 θ
dφ

dλ

dδφ

dλ
dλ

=
∫ [

− 2 sin2 ψ sin θ cos θ dθ
dλ

dφ

dλ
− 2 sinψ cosψ sin2 θ

dψ

dλ

dφ

dλ

− sin2 θ sin2 ψ
d2φ

dλ2

]
dλδφ .

(42)

We read off
Γφθφ = cot θ , Γφψφ = cotψ . (43)

So the non-vanishing Christoffel symbols are

Γψθθ = − sinψ cosψ , Γψφφ = − sinψ cosψ sin2 θ ,

Γθψθ = cotψ , Γθφφ = − sin θ cos θ ,
Γφθφ = cot θ , Γφψφ = cotψ .

(44)
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(b) The Riemann tensor is given in terms of Christoffel symbols as

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ . (45)

The symmetries of the Riemann tensor tell us that

Rµ̄

µ̄ν̄λ̄
= 0 , Rµ̄

λ̄ν̄ν̄
= 0 , (46)

where we are also using the fact that the metric we are studying is diagonal. Let
us compute, for example,

Rθ
ψψθ = ∂ψΓθθψ − ∂θΓθψψ + ΓθψλΓλθψ − ΓθθλΓλψψ

= ∂ψΓθθψ + ΓθψθΓθθψ
= ∂ψ cotψ + cot2 ψ

= −1

(47)

From this we can use the symmetries to deduce some other components

Rθ
ψθψ = gθθRθψθψ = −gθθRθψψθ = −Rθ

ψψθ = 1 ,
Rψ

θψθ = gψψRψθψθ = −gψψRθψψθ = −gψψgθθRθ
ψψθ = sin2 ψ ,

Rψ
θθψ = −Rψ

θψθ = − sin2 ψ .

(48)

Then we compute

Rθ
φφθ = ∂θ sin θ cos θ + ΓθφλΓλθφ − ΓθθλΓλφφ

= cos 2θ + ΓθφφΓ
φ
θφ − ΓθθψΓψφφ

= cos 2θ − cos2 θ + cos2 ψ sin2 θ

= − sin2 θ sin2 ψ

(49)

Analogously to what we did before, we find

Rθ
φθφ = −Rθ

φφθ = sin2 θ sin2 ψ ,

Rφ
θφθ = −gφφgθθRθ

φφθ = sin2 ψ ,

Rφ
θθφ = −Rφ

θφθ = − sin2 ψ .

(50)

Finally we compute

Rψ
φφψ = −∂ψΓψφφ + ΓψφλΓλφψ

= − cos 2ψ sin2 θ + ΓψφφΓ
φ
φψ

= − cos 2ψ sin2 θ − cos2 ψ sin2 θ

= − sin2 ψ sin2 θ ,

(51)

which we use to find
Rψ

φψφ = sin2 ψ sin2 φ ,

Rφ
ψψφ = −1 ,

Rφ
ψφψ = 1 .

(52)
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The Riemann tensor in three dimensions has 32

12(32−1) = 6 independent components.
We have computed three. The remaining ones are of the form Rµ̄

ν̄µ̄λ̄
, like

Rθ
φθψ = 0

Rφ
θφψ = 0

Rψ
φψθ = 0 .

(53)

which all happen to vanish. We have found all the 6 independent components, and
now we can move to the computation of the Ricci tensor. The components of the
Ricci tensor are given by

Rµν = Rλ
µλν . (54)

By considering the list of non-vanishing Riemann tensor components we found, it
is clear that only the diagonal components of the Ricci tensor will be non-zero. We
find

Rψψ = Rθ
ψθψ +Rφ

ψφψ = 1 + 1 = 2 ,
Rθθ = Rψ

θψθ +Rφ
θφθ = sin2 ψ + sin2 ψ = 2 sin2 ψ ,

Rφφ = Rψ
φψφ +Rθ

φθφ = sin2 ψ sin2 φ+ sin2 θ sin2 ψ = 2 sin2 ψ sin2 φ .

(55)

The Ricci scalar is given by

R = Rµ
µ = gµνRµν = gψψRψψ + gθθRθθ + gφφRφφ = 2 + 2 + 2 = 6 , (56)

confirming the fact that S3 has constant curvature. If we were to reintroduce the
radius, we would find that

R = 6
r2 . (57)

The curvature of S3 is inversely proportional to the radius of the sphere. Can you
argue why the units of R should be [L]−2?

(c) We want to check that

Rρσµν = R

n(n− 1)(gρµgσν − gρνgσµ) = gρµgσν − gρνgσµ . (58)

We have found three non vanishing independent components of the Riemann tensor.
We thus need to perform only three checks

Rψθθψ = gψψR
ψ
θθψ = − sin2 ψ = gψθgθψ − gψψgθθ = − sin2 ψ

Rψφφψ = gψψR
ψ
φφψ = − sin2 ψ sin2 θ = gψφgφψ − gψψgφφ = − sin2 ψ sin2 θ ,

Rθφφθ = gθθR
θ
φφθ = − sin4 ψ sin2 θ = gθφgφθ − gθθgφφ = − sin4 ψ sin2 θ ,

(59)

as we wanted to show.

(d) There are two indirect ways to argue that the Weyl tensor on this space has to
vanish.

• The Weyl tensor always vanishes in three dimensions. This follows from the
symmetry properties

Cρσµν = C[ρσ][µν] , Cρσµν = Cµνρσ , Cρ[σµν], (60)

together with the tracelessness condition and the fact that in three dimensions
the indices can only take three different values.
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• Two manifolds are said to be related by a Weyl transformation if they have
metrics that can be written as

g̃µν = Ω2(x)gµν . (61)

If we map the sphere through a stereographic projection, its metric g̃µν is
related to the metric of flat space with Ω(x) = 1

1+|x|2 . Metrics that are related
by a Weyl transformation have the same Weyl tensor, up to a constant factor.
Since the Weyl tensor of Euclidean space is identically vanishing because there
is no curvature, the Weyl tensor on a sphere also has to be identically vanishing.
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