RELATIVITY AND COSMOLOGY 1

Solutions to Problem Set 6 Fall 2023

1. The Expanding Universe

(a)

This is a diagonal metric, so we know that F?j o 0;; . Moreover, the only derivatives
that do not vanish are the ones with respect to time, of the spatial components of
the metric. This means that the only non vanishing Christoffel symbols are
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= Ougij = aady;, i =dp <ln \gij|) =241, (1)
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Consider a null path in the = direction

0= —dt* + a*(t)da?. (2)
From this, we deduce that
de _1dt 5
d\  ad)\’

It might seem that we have simply used dt? and dz? as factors to be divided and
interpreted as differentials. Most of the times, that works. But there is a more
formal way to understand what we have done: given a curve xz*(\), its infinitesimal
length is given by

o St W C REICI L

and a null path has by definition length, and henceforth infinitesimal length, zero,
from which the result follows (up to a sign corresponding to the lightray motion in
positive and negative directions).

We then found that null paths satisfy
ro2 )
a
where we chose the plus sign to consider paths that move in the positive x direction.
To find the momentum of a photon, we also need to impose that z#(\) is a geodesic,
on top of being a null path. Since we are interested in an observer at rest, Ul =

(1,0,0,0), effectively only j—f\ will be relevant to compute the energy of the photon.
We study its component in the geodesic equation

42t dx\
— 4+ (<) =0
e o <d>\>

LA (dx>2=0 (6)
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where in the last line we used (5). Defining p°(t) = %, the differential equation

an?
becomes

dp® a9
— + - =0
o @)
p(]p() — _7(p0)2 (7)
pO
P a
This equation is solved by
E
0 0
= — 8
p=— (8)

where Ej is the value of p® when a = 1. The energy of the photon for an observer

at rest is thus
Ey Ey

E=—p,U" = g0~ = = (9)

We interpret this result as the fact that the energy of the photon as measured by
an observer at rest is diminished by the expansion of the universe: this is called the
cosmological redshift.

In the fluid’s rest frame, the non-vanishing components of the stress energy tensor
are

. P
™=p  T= (10)
The conservation equation explicitly reads
v, =0,1" + 11, T + T, T" =0. (11)
Choosing v = 0 we get the continuity equation
AT + T}gT® + T}, T" =0
. 3('1 3 P 0
p+ gP‘i“ .aag = (12)
) a
p=-3-(p+P).
a
Choosing instead v = ¢ we obtain

OT" + T T" +T,,T" =0

1 13
a
as we wanted to show.
Using P = wp in the continuity equation we get
a
p= —35P(1 + w)
d d
e _ —S—G(l—l—w) (14)
p a
p= poa—3(1+w) )

The various cases that we are given in the Problem set represent the different eras
of evolution of our universe in which different kinds of fluids were dominating the
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total energy density and pressure of the universe. The condition w = 0 represents
pressure-less matter, which dilutes as

Pm = pm,Oa_S : (15)

This makes sense, as the expansion of the universe increases the volume and thus
reduces the density of matter. The condition w = % represents radiation, which
dilutes as

Pr = pr,Oa_4 . (16)
As we saw in the first part of this exercise, the energy of photons is diluted by
the cosmological redshift, so that on top of the cubic dilution of density due to
the expansion of space, we have an extra power of a given by the stretching of the
photons’ wavelengths. Finally, the condition w = —1 represents dark energy, which
has negative pressure. Its energy density goes as

PA = PAD- (17)

Can you deduce the chronological order of these different eras of matter domination,
radiation domination and dark energy domination?

2. Geodesic Deviation

(a) The commutator between 7" and S vanishes because they are two different vectors
of a basis. Explicitly,
r,s” =1"9,8" — "0, T"
Ozt . Ox¥ Ozt Oz

= o %05 o (18)
_ 9%z B o 0
- Otds  0sot

as expected. It will then be useful to use
r,s|” =1"9,5" - S*0, 17" =1T"Vv,S" — SV 1", (19)

which follows from the symmetry of the Christoffel symbols in their lower indices.
Indeed the additional terms are

TSP — ST TP = TPTY, SP — SPTY TH =0 (20)

“Geometric” solution This exercise is easier by using some differential geomet-
ric language (you already know the concepts, it’s just a smarter notation in which
some things take a simpler form). If you don’t like it is fine, there is an alternate
solution using brute force on components below. In class you saw the definition of
the Riemann tensor

V., VT =R, T°. (21)



However there is a more general definition that uses the covariant derivative along a
vector X, Vyx = X#V,,. It has the geometric meaning of computing the derivative
of a tensor in the direction of the vector X *. The V, you know is just a special
case when X is a basis vector. Now the more general definition of the Riemann
tensor is

([VX7 Vy] - v[X,Y]) = RAUWX“YVTU- (22)

As a bonus exercise ? you can show that this definition is equivalent to the one you
already now (it’s just a few lines). Now we can rewrite (19) as

VS —VsT =0. (25)
Then we have
A=V7V =VyVpS =VyVsT = [V, VT, (26)

where in the last line we used VT = 0 which is just the geodesic equation. Now
this is just the definition of the Riemann tensor (22) for X =7 and Y = S and
[S,T] = 0. Therefore,

At = [V, Vs TH = RF, [ TPSTY, (27)

as we wanted to show.

Brute force solution Let us be very pedantic and carry out each step

At =TrPV V'

=T*V,(T7V,S")

= TPV, (S7V,1")

= (I*"V,S7)(V,T*) +T1T°5°V ,V,T"

= (SV,T7)(V, T")+T°5°(V,V,TH =V, ,V,T"+V,V,TH")

= (S'V,17)(V,T") + TPS°(R:, ,,T" + V,V,T")

= (S"V,T7)(V,T") + R, T°T"S? + SV, (T°V , ") — (S°V, ")V, T"

=Rt TPT"S? + S°V,(T"V , T")

= R\, T°T"S7,

(28)

proving what we wanted. The step from the second to the third line is using the
vanishing of the commutator of the two vectors. The step from the fourth line

to the fifth is introducing some terms that add up to zero in order to make the
Riemann tensor appear. After that, we write 7°5°V,V ,T# = SV (T°V ,T+) —

INote that the notion of derivative is meaningless without specifying a direction, if you are surprised
it is just that this fact was hidden to you when always taking derivatives along basis vectors.
2Here it is :

[Vx,Vy]T? = XFYY [V, VT + X"V, V")V, T* - Y"(V, X"V, T, (23)

where the second term comes from Leibniz’s rule. It gets cancel by the covariant derivative along the
commutator :

Vixy T = [X,Y]'V, T = (X*(V,Y") - Y*(V,X")V, T (24)



(S°V,1P)V , T such that in the next line we get a neat cancelation. The final
step is true because TPV ,T*" = 0 for a vector T' that is defined to be tangent to a

geodesic.

3. The Riemann Tensor

Following the hint, we will start from
Rpaw/ + Rp/u/a + Rpl/au =0 )
and its permutations

Rypwp + Rovpp + Roppw = 0,
R[.LVpO’ + Rupo’y + R;U‘UVP — 0 9
Rl/pU,u + Ruaup + Ryupg - O .

We start by adding (29) to (32). We get

0= Roopw + Ropwo + Rovou + Rupop + Ruopp + Ruppo
= Roopw + Ryupov + Rpvop — Rovou + Rovpp + Ruppo
= Rpaul/ + Rypa'u + Raup,u + Ru,upa )

(29)

—~
w
—_

~—

(33)

where we used the Riemann’s antisymmetry properties to cancel some terms and put
other terms in a form that will be convenient for what is to come. We continue by adding

(30) to (31). We get

0= Rowp + Rcwpu + Ropuv + RWpU + Rupov + Rucwp
= RUWP + Ravw o RPUW + Ruvm + Rupcw o Rcrw/p
= Rawfp - Rpaw/ + R;u/pa + R,upm/ .

We impose this to be equivalent to (33). We obtain

Rpgpw + Rupov + Rovpp + Ruppoe = Ropwp — Rpopw + Rywpe + Rupow
Rpauu - Rm/pa = _Rpauy + Ruupa
2R =2R

popv UVpo

as we wanted to prove.

(34)

(35)



4. The Curvature of S3

(b) The integral reads

I:;/[(ﬁ)QJrsin?w(<£>2+sin20<ﬁ>2)]w (36)

Let us consider first the variation with respect to ¢ — 1 + 6. We are going to
only keep terms up to dv?

1| dyds . AN A
5¢I:§/ [2;§X+QSIH¢COS¢(S@/J ((dA) +Sm20<df> )] d\

&2 40\ > o\’ o
:/ [—Cl;§+sin¢cos¢<<cv\> +Sin20<df> )] dpd\.
We used that
dy dop\?  (dyp\P | dy doy
<cu Sy ) - (ax) T2y o). (38)

and integrated by parts the derivative acting on d¢ . The variation of this integral
should vanish. Comparing with the geodesic equation, we read off some Christoffel
symbols

Iy, = —sinecos v, F;{;ﬁ = —sincoshsin@. (39)

Then we vary with respect to 6 and we get

R do dso _ do\’
0l = 5/ [sm Y (2d)\d>\+281n€c:08959 <d)\> )} d\

(40)
i df 0 g\’
= / —2sin ¢ cos ¢dfdA — sin? wW + sin® 1) sin @ cos 6 ((;f\) ] 00d\ .
We read off
er = cot v, Fgw = —sinfcosf. (41)
Finally, we vary with respect to ¢.
0l = /sin2 1) sin? Qﬁ(?;bd)\
:/ {—281n2wsin90059;liﬁ—2Sin¢coswsin29ﬁ;lf (42)
d2
— sin? @ sin? ¢CM‘S Ao .
We read off
Fg(ﬁ = cot b, F% = coty. (43)
So the non-vanishing Christoffel symbols are
F%:—sinwcosw, F;fgb:—sinwcoswsinQG,
I,y = cot v, FZM = —sinfcosf, (44)

Ff(b:coté’, Fi(b:cot@D.



(b) The Riemann tensor is given in terms of Christoffel symbols as
Rpaul/ = aﬂrlu)cr - aVFZU + F,Z)\Fl)/\a - Pfu))\rﬁa : (45)

The symmetries of the Riemann tensor tell us that

R* =0, R =0, (46)

A Nov

where we are also using the fact that the metric we are studying is diagonal. Let
us compute, for example,

Ryyp = 04T, — 0Ty, + T3algy — TG0
= 0, cot ) + cot? 1
=1

(47)

From this we can use the symmetries to deduce some other components

ngeqp = 9" Royoy = — 9" Royyo = —Rewe =1,
R'yp9 = 9" Ryouo = —9"Y Royyo = =9 goo R g = sin’ ¢, (48)
Rwogw = _Rwawg = —sin7.
Then we compute
RGMG = Opsinfcos b + FZ/\Fé\d) - Fg/\f‘gdy
= cos 20 + F%F?qs - F3¢F$¢

= cos 20 — cos® 0 + cos® ¢ sin® @

= —sin?fsin® ¢

(49)

Analogously to what we did before, we find
Re¢9¢ — _R0¢¢9 — Sin2 9 SiIl2 /lp 5
Ru5 = —9%°goo Ry = sin® ), (50)
Finally we compute
P _ P P A
Rypp = =0l + a5y
= —cos2¢sin? 6 + F%Fﬁw

(51)
= —cos 2t sin® § — cos® 1 sin® @
= —sin? 4 sin® 0,
which we use to find
R¢¢¢¢ - Sin2 w Sin2 ¢ ;
B, — 1, (52

¢ —



The Riemann tensor in three dimensions has :1% (32—1) = 6 independent components.

We have computed three. The remaining ones are of the form R" DA like
0 —
p

which all happen to vanish. We have found all the 6 independent components, and
now we can move to the computation of the Ricci tensor. The components of the
Ricci tensor are given by

R, =R, . (54)

By considering the list of non-vanishing Riemann tensor components we found, it

is clear that only the diagonal components of the Ricci tensor will be non-zero. We
find

Ryp =Ry + ROy =1+1=2,
Rog = Ry + Ry = sin® ¢ + sin® ¢ = 2sin’ ¢, (55)
Ryy = R%W + Red)% — sin 1) sin? ¢ + sin? @ sin? 1) = 2sin® Y sin? ¢
The Ricci scalar is given by
R = R‘uﬂ = g,u,l/Rl“/ = gw"bwa + g99R99 + g¢¢R¢¢ = 2 —|— 2 + 2 = 67 (56)

confirming the fact that S® has constant curvature. If we were to reintroduce the
radius, we would find that

6
The curvature of S is inversely proportional to the radius of the sphere. Can you
argue why the units of R should be [L]72?

We want to check that

R
Rpo;w = m(gpugay - gquau) = GpuGov — GpvYGou - (58)

We have found three non vanishing independent components of the Riemann tensor.
We thus need to perform only three checks
Ryoop = gwwaeaw = —sin® Y = gypogoy — GyypJos = —sin’ Y
Rygons = G Ry = —sin® sin® 0 = gyogop — Gupgos = —sin®Ysin® 0, (59)
qugqsg = gggRgd)d)@ = — SiH4 77/) SiIl2 ‘9 = gg¢g¢9 — gggg¢¢ = — SiIl4 Ib SiIl2 0,

as we wanted to show.

There are two indirect ways to argue that the Weyl tensor on this space has to
vanish.

o The Weyl tensor always vanishes in three dimensions. This follows from the
symmetry properties

Cpa,uy = C[po} [uv] Cpa,uu = C,prcr s Cp[U;LV]7 (6())

together with the tracelessness condition and the fact that in three dimensions
the indices can only take three different values.



o Two manifolds are said to be related by a Weyl transformation if they have
metrics that can be written as

gul/ = QQ(m)guu- (61)

If we map the sphere through a stereographic projection, its metric g,, is
related to the metric of flat space with Q(z) = ﬁ Metrics that are related
by a Weyl transformation have the same Weyl tensor, up to a constant factor.
Since the Weyl tensor of Euclidean space is identically vanishing because there
is no curvature, the Weyl tensor on a sphere also has to be identically vanishing.



